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BACKGROUND: Chemicals in consumer products are a major contributor to human chemical coexposures. Consumers purchase and use a wide variety
of products containing potentially thousands of chemicals. There is a need to identify potential real-world chemical coexposures to prioritize in vitro
toxicity screening. However, due to the vast number of potential chemical combinations, this identification has been a major challenge.

OBJECTIVES: We aimed to develop and implement a data-driven procedure for identifying prevalent chemical combinations to which humans are
exposed through purchase and use of consumer products.

METHODS: We applied frequent itemset mining to an integrated data set linking consumer product chemical ingredient data with product purchasing
data from 60,000 households to identify chemical combinations resulting from co-use of consumer products.

RESULTS: We identified co-occurrence patterns of chemicals over all households as well as those specific to demographic groups based on race/ethnicity,
income, education, and family composition.We also identified chemicals with the highest potential for aggregate exposure by identifying chemicals occur-
ring inmultiple products used by the same household. Last, a case study of chemicals active in estrogen and androgen receptor in silicomodels revealed pri-
ority chemical combinations co-targeting receptors involved in important biological signaling pathways.

DISCUSSION: Integration and comprehensive analysis of household purchasing data and product-chemical information provided a means to assess
human near-field exposure and inform selection of chemical combinations for high-throughput screening in in vitro assays. https://doi.org/10.1289/
EHP8610

Introduction
Humans are potentially exposed to thousands of commercial chem-
icals from a variety of sources. For example, the public active in-
ventory of chemicals regulated by the U.S. Environmental
Protection Agency (U.S. EPA) under the Toxic Substances
Control Act (TSCA) currently contains more than 31,000 active,
nonconfidential substances (U.S. EPA 2020); additional chemicals
are regulated under the authority of other statutes, e.g., the Federal
Insecticide, Fungicide, and Rodenticide Act (U.S. EPA 1996) or
the Federal Food, Drug, and Cosmetic Act (U.S. Food and Drug
Administration 1934). To address the challenges associated with
characterizing the toxicity for these large numbers of chemicals,
thousands of high-throughput (HT) cell and cell-free bioactivity
assays have been conducted under the U.S. EPA’s Toxicity
Forecaster (ToxCast™; http://www.epa.gov/chemical-research/
toxicity-forecaster-toxcasttm-data) (Dix et al. 2007; Kavlock et al.
2012) and the cross-agency Tox21 (Thomas et al. 2018; Tice et al.
2013) programs. According to the National Research Council
(NRC) report, Toxicity Testing in the 21st Century (National
Research Council Committee on Toxicity Testing and Assessment
of Environmental Agents 2007), one of the original aims of a para-
digm shift in toxicity testing was to increase the investigation of
chemical mixtures, especially chemical coexposures that occur in

human populations. However, to datemost in vitro testing has been
performed for single chemicals.

Although HT screening (HTS) approaches are more efficient
and less expensive than animal testing, developing a strategy for
addressing mixtures is still challenging. The number of potential
chemical combinations is huge (there are more than one million
possible combinations when considering just 20 chemicals),
meaning HTS of all or even a fraction of the potential combina-
tions is impossible. An alternative approach would be to predict
bioactivity of chemical mixtures from component chemical
responses via modeling; however, some experimental testing of
mixtures is needed to evaluate those predictions and inform selec-
tion or refinement of models. Methods to identify and prioritize
chemical mixtures representing real-world coexposures are
needed to inform such in vitro mixtures testing. Recent work
from the U.S. EPA (Kapraun et al. 2017) characterized chemical
combinations identified in National Health and Nutrition
Examination Survey (NHANES) biomonitoring studies of the
U.S. population using frequent itemset mining (FIM) (Borgelt
2012) in an effort to inform prioritization of chemical mixtures
based on likely human exposure. However, NHANES only moni-
tors for a limited number of chemicals, and as noted by the
authors, the chemical groups they identified are unlikely to repre-
sent the full spectrum of combinations experienced by the U.S.
population. In addition, NHANES does not currently monitor
children under age 6 y, so no chemical combinations associated
with that demographic could be identified.

Chemicals in consumer products may lead to coexposures,
and chemicals with consumer uses are more likely to have nonne-
gligible concentrations in the human body (Wambaugh et al.
2013). Thousands of chemicals present in different types of prod-
ucts drive exposures that depend on product purchasing patterns,
usage patterns, and consumer demographics. To characterize rel-
evant coexposures, it is necessary to understand which products
consumers are using regularly and the chemicals present in those
products. Recent efforts to share, collect, and categorize product-
chemical data have increased available data on consumer prod-
ucts and the chemicals they contain for use in exposure and risk
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assessments (Dionisio et al. 2018; Goldsmith et al. 2014). Gabb
and Blake (2016) made use of publicly available consumer prod-
uct ingredient lists to identify combinations of chemicals co-
occurring in individual consumer products. Collection of longitu-
dinal purchasing data has also become easier through electronic
sales tracking by retailers and market research firms, allowing
analyses of consumer purchasing behaviors that inform product
use and subsequent exposures, e.g., Tornero-Velez et al. applied
FIM to identify co-purchase of different product types (which
could broadly inform exposure potential) (Tornero-Velez et al
2020). However, in that work, chemical ingredient data could not
be linked to purchased products. Efforts to link specific individu-
als or households to chemicals in products are needed to refine
the prediction of true potential coexposures to chemicals in con-
sumer products.

As proposed by the NRC (National Research Council Committee
on Toxicity Testing andAssessment of Environmental Agents 2007),
a “focused and intelligent” approach to assessing the risks associated
with chemical mixtures involves toxicity testing based on impact on
biological pathways. A biological pathway of emerging importance
in relation to chemical toxicity is the endocrine signaling pathway,
which plays a role in developmental, neurological, reproductive, met-
abolic, cardiovascular, and immune systems in humans (Colborn et al.
1993; Davis et al. 1993; Diamanti-Kandarakis et al. 2009). Endocrine
active chemicals (EACs) have the potential to mimic or interfere with
natural hormones and alter their mechanisms of action at the receptor
levels, as well as interfere with the synthesis, transport, and metabo-
lism of endogenous hormones (Diamanti-Kandarakis et al. 2009).
Numerous EACs have been shown to occur in consumer products
(Dodson et al. 2012), and their co-occurrence in individual consumer
products has been studied (Gabb and Blake 2016). New consensus in
silico quantitative structure–activity and docking models for endo-
crine pathway activity have been developed using in vitro bioactivity
screening data fromToxCast™/Tox21HTS assays for approximately
1,700 chemical structures as training set data (Grisoni et al. 2019;
Mansouri et al. 2016; Mansouri et al. 2020). These models allow for
screening of thousands of additional chemicals present in consumer
products for potential endocrine activity.

In this work, we present a complementary approach to
biomonitoring-based mixture identification (Kapraun et al. 2017)
that used consumer product ingredient and purchasing data
streams. We integrated consumer product ingredient and product
purchasing data via unique product identifiers to develop a large
data set of chemicals introduced to specific households and apply
FIM to identify relevant co-occurring chemicals within house-
holds. Results were stratified by household demographics to char-
acterize variability in coexposure patterns and identify potential
chemical combinations associated with sensitive populations,
such as families with young children and women of childbearing
age. In addition, we present a case study to identify chemical
combinations associated with common biological pathways by
examining potential endocrine-disrupting chemicals. We applied
new in silico consensus models of endocrine receptor bioactivity
to identify subsets of the consumer product chemicals that are
predicted to share common end points. Based on our results, we
provide recommended sets of chemical combinations to be priori-
tized for bioactivity testing in in vitro HTS assays.

Methods

Consumer Product Purchase Data
A material transfer agreement was established in October 2013
whereby The Nielsen Company (US), LLC, provided the U.S.
EPA with consumer product purchase (CPP) data for household
products, resulting from Nielsen’s Consumer Panel Services. The

data transferred under this agreement were reviewed by a U.S.
EPAHuman Subjects ReviewOfficial and determined to qualify as
exempt from U.S. EPA Regulation 40 CFR 26 (Protection of
Human Subjects) and thus U.S. EPA IRB review (26 September
2013). The data consisted of 4.6 million purchases by 60,476
homes for the 2012 calendar year for a selection of product catego-
ries relevant to chemical exposure. As a part of this program, data
were collected by a hand-held scanner used by participants to re-
cord the bar code on every product intended for home use pur-
chased by members of the household. Households were selected
using a sampling framework that supported market research inter-
ests. As reported in Tornero-Velez et al. (2020) the distributions of
households by race, education, and income aligned generally with
those reported in the U.S. Census Bureau’s American Community
Survey (U.S. Census Bureau 2010), with a moderate overrepresen-
tation of middle-income, college-educated, White households.
Individual household records were provided but without any per-
sonally identifiable information. The data included the Nielsen
Homescanmarket (the general metropolitan area) and select demo-
graphic information for the participating households (Table 1),
including household income and family size and the age, race, and
income of the female head of household (which was the individual
for whichNielsen collects themost information due to influence on
consumer purchasing). Because women of childbearing age are of
unique interest in risk assessment, age was used here to create two
additional categories for female head of household: women of typi-
cal childbearing age (age≤44 y) and nonchildbearing age
(age>44 y). For each product purchased, the universal product
code (UPC), product name abbreviation, product brand, and prod-
uct size were provided. Products were organized into 29 “broad”
product groups, which are further divided into 190 specific catego-
ries. The list of categories is included in Excel Table S1. The pri-
mary uses of Homescan data are for market research, e.g., price
(Einav 2010), competition (Hausman and Leibtag 2007), and
brand choice (Gupta 1996). Eyles et al. (2016) also used these data
for public health purposes relating to food and nutrition. The cur-
rent publication is the first application that we know of for the pur-
pose of evaluating chemical ingredient exposure.

Chemical Ingredient Data
Data on chemicals in specific consumer products were obtained
from the most recent version (version 3) of the U.S. EPA’s
Chemical and Products Database (CPDat) (Dionisio et al. 2018).
The CPDat ingredient data were obtained via collection and cura-
tion of one of three types of data documents: public safety data
sheets (SDS), ingredient lists, and manufacturer ingredient dis-
closures. Documents were downloaded via web scraping from a
large number of data sources and parsed to identify relevant in-
formation such as product name, ingredient (chemical) name, and
ingredient functional use. Recently, a new retailer application
programming interface (API; https://developer.walmart.com/)
allowed for the downloading of additional product metadata
(including UPC identifiers) for thousands of products with ingre-
dient data. Automated (script-based) and manual curation efforts
(retrieval, parsing, and quality assurance of SDS) were performed
to process the data and populate the database (for details, see
Dionisio et al. 2018). In brief, chemical and ingredient weight
fraction data were scraped and parsed into the correct fields from
documents using scripts, written in either R (multiple versions, R
Foundation for Statistical Computing) or Python (multiple ver-
sions, Python Software Foundation, https://www.python.org/),
that were tailored to the format of the document source. Standard
quality assurance workflows were applied in which 10% of the
documents processed with each script were manually checked,
and scripts were corrected if needed. Chemical identifiers (which
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varied across data sources) were mapped to unique substance identi-
fiers [Distributed Structure-Searchable Toxicity Database Substance
Identifiers (DTXSIDs)] using U.S. EPA’s CompTox Chemicals
Dashboard (https://comptox.epa.gov/dashboard); all chemical
names used herein are curated preferred names used by the
Dashboard. The CPDat data used here contained ingredient infor-
mation for 230,407 unique consumer products.

CPDat also contains information on chemical functional use
(e.g., fragrance, solvent), which can provide additional context to
the chemicals identified in different combinations. For example,
these data allowed us to interpret why specific chemicals
occurred in products and whether prevalent combinations were
composed of chemicals with the same use. However, chemicals
can have multiple functions that could vary across products. To
make our analysis more concise and the results more interpreta-
ble, we employed the harmonized functional uses developed by
Phillips et al. (Phillips et al. 2017). These harmonized uses were
assigned to chemicals based on a cluster analysis performed in R
(version 3.1.2, R Foundation for Statistical Computing); each
chemical was assigned a single nominal function based on its
reported uses (which was typically its most common reported
use). The function data are imperfect, (e.g., a chemical may have
a harmonized use “fragrance” when it was reported as such, even
if it was a solvent or preservative in a fragrance formulation) but
provide additional useful context to identified mixtures.
Chemicals that had many different reported functions in products
(generally more than five) were assigned the function identifier
“ubiquitous,” whereas chemicals for which no harmonized func-
tional use was available were assigned “unknown.”

Chemicals Introduced to Individual Households
The CPP data and chemical ingredient data sets were merged by
UPC. The raw CPP data and CPDat ingredient data contained
133,966 and 230,407 unique product UPCs, respectively. UPCs in
both data sets underwent cleaning and quality assurance to obtain
standard formatting. This process included aligning UPCs that
were reported without leading zeros and the removal of any UPC
that failed a test of its check digit (the last digit of the UPC, created
from the values of the other digits, which can be used to test
whether the information is correct; an incorrect check digit could
indicate where UPCs were incorrectly entered or corrupted). To
improve coverage of CPP, a simple form of fuzzy matching was
used between the two UPC lists. Fuzzy matching is a text analysis
method that matches strings by allowing a set of differences ormis-
takes (e.g., match misspelled words to a dictionary). For UPCs, we
took advantage of the fact that similar products will have similar
UPCs (e.g., two different types of household cleaner of the same
brand will typically be made by the same company and therefore
differ only in the last two or three digits depending on factors such
as scent/flavor, size, and packaging). The difference_inner_join
function, part of the R package fuzzyjoin (https://CRAN.R-
project.org/package=fuzzyjoin), was used to match UPCs that dif-
fered only in the last 3 digits (only 2 of which relate directly to the
product because the 12th digit is the check digit) and thus likely
contained primarily the same ingredients. Households with fewer
than 12 product purchases throughout the 2012 calendar year
(<1 per month) were considered noncompliant (too few purchases
for our analysis) and removed. To identify products (and thus
chemicals) likely to be co-used within a household (resulting in

Table 1. Demographic composition of households.

Demographic category Lumped Nielsen categories Households Percent Mapped households Percent of mapped

Incomea

Lower income Under $5,000, $5,000− $7,999,
$8,000− $9,999, $10,000− $11,999, $12,000− $14,999

4,307 6.7 (%) 3,153 5.9 (%)

Mid lower income $15,000− $19,999, $20,000− $24,999, $25,000− $29,999 9,410 15.6 (%) 7,976 14.9 (%)
Mid higher income $30,000− $34,999, $35,000− $39,999, $40,000− $44,999,

$45,000− $49,999
14,984 24.8 (%) 13,375 25 (%)

Higher income $50,000− 59,999, $60,000− $69,999, $70,000− $99,999,
$100,000 & over

32,045 53.0 (%) 29,021 54.2 (%)

Total 60,476 100 (%) 53,525 100 (%)
Race/ethnicitya

White White 50,208 83 (%) 4,4474 83 (%)
Black/African American Black/African American 58,91 9.7 (%) 5,312 9.9 (%)
Asian Asian 1,809 3 (%) 1,450 2.7 (%)
Other Otherb 2,568 4.2 (%) 2,289 4.3 (%)
Hispanic Hispanicb 3,189 5.3 (%) 2,897 5.4 (%)
Total 60,476 100 (%) 53,525 100 (%)
Family compositiona

No children under 18 No children under 18 47,473 78 (%) 41,446 77.4 (%)
Children under 6 A=Children under 6 1,740 3 (%) 1,590 3 (%)
Children under 13 B=A, 6− 12, Under 6&6− 12 6,407 11 (%) 5,886 11 (%)
Children under 18 C=B, 13− 17, 6− 12& 13− 17,Under 6&13− 17,

Under 6&6− 12& 13− 17
13,003 22 (%) 12,079 22.6 (%)

Total 60,476 100 (%) 53,525 100 (%)
Education levela

Grade and high school Grade School, Some High
School, Graduated High School

14,317 24 (%) 1,3148 24.6 (%)

College Some College, Graduated College 33,596 56 (%) 30,436 56.9 (%)
Post college Post College Graduate 6,476 11 (%) 5,595 10.5 (%)

No Female head or unknownb 6,089 10 (%) 4,346 8.1 (%)
Total 60,476 100 (%) 53,525 100 (%)
Female agea

Non-childbearing No Female Head, 45–49 y, 50–54 y, 55–64 y, 65+y 48,993 81 (%) 43,064 80 (%)
Childbearing Under 25 y, 25–29 y, 30–34 y, 35–39 y, 40–44 y 11,483 19 (%) 10,461 20 (%)
Total 60,476 100 (%) 53,525 100 (%)

aDemographic category distribution based on the female head of household.
bThese demographics were not analyzed.
cHispanic ethnicity is not a race demographic; it comprises the other races but includes households with the female head identifying as Hispanic.
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coexposure), we aggregated all products and chemicals purchased
within each household for each month to create a final data set for
analysis (539,857 total household-months). Chemical co-
occurrence and aggregation were investigated by month due to the
assumption that products bought within that time frame would be
used around the same time, leading to coexposure of the chemicals
in those products.

Frequent Itemset Mining
FIM was applied to the data set of chemicals introduced to house-
holds. Briefly, the set of unique chemicals introduced within a
month into a single householdwas considered, in standard FIM ter-
minology, a transaction. This application is analogous to that per-
formed by Kapraun et al. (2017), where a transaction was the set of
chemicals identified in a sample from a single individual; full
details of themathematical methods are included in previous publi-
cations (Kapraun et al. 2017; Tornero-Velez et al. 2020). The trans-
action data represent a presence–absence matrix, where columns
were chemicals and rows were household-months. FIM was
applied to identify prevalent chemical combinations, or itemsets,
occurring within the full set of transactions. Prevalent itemsets
were those defined as having a relative support greater than some
threshold minimum, where relative support (a standard FIM term)
was defined as the fraction of all transactions containing the item-
set. From here forward we use the term prevalence to be synony-
mous to relative support. Threshold prevalences were determined
for each chemical set studied (see next section), for both an overall
household analysis and for an analysis by demographic, by explor-
ing a range of prevalences and identifying a threshold value that
provided a reasonable number of prevalent itemsets for analysis. In
general, thresholds were selected such that at minimum, 50 to sev-
eral hundred prevalent itemsets could be identified for individual
demographics. Prevalent individual chemicals and chemical item-
sets were found by using the Equivalence CLASS Transformation
(Eclat) algorithm (Zaki et al. 1997), which identifies individual
prevalent items and builds itemsets by increasing the number of
items one at a time until no prevalent itemsets or no candidate item-
sets can be found. We used the Eclat implementation within the
arules package (Hahsler et al. 2005) in R (version 3.6.1). To iden-
tify prevalent chemical combinations within individual demo-
graphics, product groups, and chemical subsets (see the “Results”
section), the transaction data were subset by the necessary criteria,
and the FIM analyses were repeated. Chemicals and chemical
itemsets were ranked by prevalence, and departures from the
global (all households) rank by demographic group were assessed
(drank = rankAll–rankDemographic) to quantify differences among
demographics. We also identified chemicals with a high potential
for aggregate exposure within households, by identifying chemi-
cals that occurred in multiple products in the highest number of
transactions (household-months).

Chemicals to Be Analyzed
Analysis of co-occurring chemicals was restricted to chemicals of
regulatory or biological interest to avoid identification of prevalent
chemical combinations containing common substances having lit-
tle relevance to risk assessment (e.g., water). As an initial global
look at chemical combinations, the data were limited to the active
public chemical inventory of the TSCA, obtained from the U.S.
EPA’s CompTox Chemicals Dashboard (U.S. EPA 2020); 649 of
the 31,460 active, nonconfidential TSCA chemicals were found in
the consumer product–based transaction data (this level of match-
ing was not unexpected because the inventory contains a large
number of industrial chemicals that may not have consumer path-
ways). As a more focused pathway-based case study, a set of

potential endocrine active chemicals was analyzed. The chemicals
were identified using results from the Collaborative Estrogen
Receptor Activity Prediction Project (CERAPP) (Mansouri et al.
2016) and the Collaborative Modeling Project for Androgen
Receptor Activity (CoMPARA) (Mansouri et al. 2020). These
studies employed consensus methods to integrate many quantita-
tive structure–activity relationship (QSAR) and docking models
trained on HTS assay data to screen thousands of chemicals for
estrogen and androgen receptor activity. Chemicals predicted to
have activity (a reported result of “strong or moderate” for
CERAPP; “active” for CoMPARA) for binding, agonist character-
istics, or antagonist characteristics for the estrogen and androgen
receptors were selected andmapped to the chemicals in the transac-
tion data. Additionally, a curated list of EACs described by
Dodson et al. (2012) was also considered. Chemicals from this list
were included in our set of EACs, where those not predicted to
have endocrine receptor or androgen receptor activity (in CERAPP
andCoMPARA)were labeled “Other” in the figures and tables.

Results

Transaction Data
Figure 1 depicts the data processing performed prior to applica-
tion of FIM and includes the number of households, products,
and chemicals ultimately assessed. The CPP data from Nielsen
contained 4,674,292 purchases of 133,966 unique products by
60,476 households. A total of 31,585 of these products could be
mapped to chemical information in CPDat, which contained in-
formation on 230,407 products and 1,082 unique chemicals. A
total of 10,719 products had exact UPC matches, and 20,656
were matched through fuzzy matching. After UPC mapping and
removal of noncompliant households (those with fewer than 12
purchases over the year), there were 2,351,560 total purchases
(50.3% of purchases retained from the original CPP data), repre-
senting 31,375 unique products (23.4%) and 53,525 households
(88.5%). There were 783 chemicals (unique DTXSIDs) associ-
ated with this data set, of which 623 had a harmonized functional
use, spanning 50 unique use types. Aggregation of these pur-
chases by month resulted in 539,857 final transactions for analy-
sis. Of the 783 chemicals in the purchased consumer products,
649 were present in our broad chemical set of interest to be ana-
lyzed, and 48 were predicted to be endocrine active, with an addi-
tional 17 coming from Dodson et al. (total of 65). All chemicals
to be analyzed and their DTXSIDS (with a link to their data in
the CompTox Dashboard) are provided in Excel Table S2.

Overall Chemical Prevalence
Figure 2 shows the 20 overall most prevalent individual chemi-
cals introduced into households in unique household-months.
The most prevalent chemical across all households was ethanol,
occurring in around 52% of household-months, followed by other
common consumer product ingredients such as glycerol, 1,2-pro-
pylene glycol, and common spray formulation propellants (isobu-
tane and propane). Figure 2 also provides the departure of rank
order (or rank difference) of prevalence across the various house-
hold demographics from the global rank. A positive departure
indicates a relative increase in prevalence and was colored red in
the heat map; conversely, a negative departure in rank indicates a
decrease in prevalence and was colored green. Note that ranks
are not comparable across demographics as a quantitative mea-
sure (e.g., chemical A was not in twice as many products pur-
chased by Asian households compared with White households if
its respective ranks were 10 and 5) but are intended to suggest
shifts in potential exposure for different demographics with
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respect to all households. The row annotation in Figure 2 indi-
cates the harmonized functional uses, with the top four chemicals
having a variety of uses in products (ubiquitous harmonized func-
tional use). The two most prevalent chemicals (ethanol and glyc-
erol) achieved the same rank across all demographic groups
(indicating they are common in products used by most house-
holds), whereas 6 of the top 20 chemicals had a rank difference
of 5 or more for at least one demographic. For example, the
group of chemicals represented by C10-16-alkyldimethylamines
oxides had a high rank difference (potentially more exposure) for
households with lower income or females of minority race/eth-
nicity (Figure 2). This chemical is mainly used in a variety of
cleaning products.

The chemicals that displayed the highest potential for aggre-
gate exposure (i.e., those that occurred most frequently in multi-
ple products within transactions) exhibited high overlap with the
most prevalent chemicals (Excel Table S3). A number of these
chemicals (including ethanol and sodium carbonate) mostly occur
in products in the detergents group (which included most house-
hold cleaners), which was the most prevalent group by number of
purchased products in the CPP data (Tornero-Velez et al. 2020).
The chemical with the highest potential for aggregate exposure
was ethanol, occurring in two or more products in 21.6% of all
household-months. A total of 147 chemicals occurred in 2 or
more products in at least 0.1% of household-months, with an

average of 2.25 product occurrences in those months. An interest-
ing finding was that sodium [dodecanoyl(methyl)amino]acetate
(the 10th ranked chemical for aggregate exposure) occurred pri-
marily in hair-care products (which accounted for 80% of the
multiple occurrences). The −14 [negative 14] rank difference for
African-American households for this chemical in Figure 2 could
reflect the use of different hair-care products (ones not containing
this chemical), in comparison with the whole population.

Prevalent Chemical Combinations
To investigate co-occurrence of the broad chemical set in prod-
ucts purchased by households during a month, FIM was used
with a minimum prevalence of 2.5%. The number of prevalent
itemsets (chemical combinations) for each demographic using
this threshold ranged from around 550 for the lower income de-
mographic to approximately 9,300 for the Asian household de-
mographic. The 20 most prevalent itemsets overall and their
relative ranking by demographic are provided in Figure 3. The
demographics and chemical sets were clustered to indicate the
similarity of rankings of chemical combinations. For example,
near the middle of Figure 3 (marked “A”), a cluster of itemsets
exhibited similar rankings (positive departure from global rank);
these itemsets were associated with very widely used chemicals
such as ethanol and glycerol. The prevalence of these itemsets

Figure 1. Data processing pipeline for frequent itemset mining of chemicals in consumer purchasing. Consumer purchasing data was obtained from Nielsen,
mapped with a database linking chemicals to products and integrated with chemical functional use information, and purchases were aggregated by month to
focus on chemical coexposure. For analysis, chemicals were limited to a broad set from the nonconfidential Toxic Substances Control Act (TSCA) inventory
and a smaller pathway-based case study (endocrine-disrupting chemicals).
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could arise from the types of products these households purchase
or simply a higher volume of product purchases. Three itemsets
toward the bottom of Figure 3. (marked “B”) exhibited similar
patterns across demographics, with elevated rank in lower- to
middle-income demographics and the African-American house-
hold demographic and lower rank differences in Asian household
demographic and demographics including females with post-
college education and females of childbearing age; these three
sets contained antimicrobials and surfactants found in cleaning
products. Some demographic groups, such as no child, White,
nonchildbearing, and college, exhibited very little difference in
their relative rankings (mostly 0, white-colored tiles) when com-
pared to all households. This finding was most likely due to the

high representation of these households in the CPP data (see
Table 1).

Although Figure 3 highlights the potential exposure differen-
ces across demographic groups for the 20 most prevalent chemi-
cal combinations, it was also important to identify other
combinations that are common in a nonnegligible number of
households. Such sets represent the chemical combinations most
unique to individual demographics and for which there might be
the greatest potential for differential exposure. See Excel Table
S4 for the most “highly divergent” itemsets for 6 under-
represented demographic groups; in addition, the 100 most preva-
lent chemical combinations for each demographic are provided in
Excel Table S5.

Figure 2. Prevalence and ranking of individual chemicals. Heat map illustrating the ranked support for the 20 most prevalent chemicals. For a demographic,
green color denotes a downward shift of rank relative to the global (lower priority/potential exposure), and red denotes an upward shift (higher priority/poten-
tial exposure). Cell numbers quantify the unit change in rank (for households in that demographic) relative to the global rank (all households). Note that ranks
are not comparable across demographics as a quantitative measure but are intended to suggest shifts in potential exposure for different demographics with
respect to all households. Column annotations indicate demographic categories, and row annotations indicate harmonized functional use of chemicals.
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Prevalent Chemical Combinations by Product Group
Different product groups (e.g., hair care, cosmetics) may contain a
wider variety of products, or the products in these groups may gen-
erally contain more diverse sets of chemicals, which could lead to
an increased diversity in chemical exposures for certain house-
holds. To investigate this, household purchases were stratified by
both product group and demographic. FIMwas then used to look at
the total number of prevalent chemical sets (using a minimum
prevalence of 0.1%) associated with the five high-level product
groups with the most overall purchases (Figure 4); the individual
product types that make up each group are provided in Excel Table
S1. A larger or more diverse set of chemicals in the purchased
products for a household would result in a higher number of total
prevalent chemical combinations that can be discovered. White
households tended to encounter fewer chemical combinations
from fresheners and deodorizers and cosmetics, but a greater num-
ber from detergents, deodorants, and skin-care preparations.
Households headed by females with grade and high school educa-
tions encountered more chemical combinations from deodorant
and skin-care preparation products. Households with children
under age 6 y experienced the widest variety of chemical sets from
fresheners and deodorizers and deodorants but the fewest from cos-
metics. Higher income households were potentially exposed to
more chemical combinations from detergents but fewer from skin-
care preparations. Finally, households with females of childbear-
ing age were potentially exposed to larger numbers of combina-
tions via cosmetics, detergents, and fresheners and deodorizers.

Examination of the most prevalent chemical sets by product
group showed that the agreement across demographic groups can
vary widely depending on the product category, indicating that
some product types show more diversity in chemical content
across demographics than others (Figures S1–S9). For example,
cosmetics had few differences in ranking across demographics
for most of the top 20 itemsets, perhaps indicating a relatively
lower heterogeneity in chemical makeup across products in this
category. Chemical sets from household cleaners exhibited more
diversity in demographic ranks, perhaps indicating more variety
in chemical content by product type or brand. Some groups offer
specific insights, such as hair care, which demonstrated differen-
ces in ranks for specific chemical sets for households with a head
female of Asian or African-American race, thus potentially iden-
tifying key chemical mixtures associated with hair products used
more often in these communities.

Case Study: EACs
As a case study, we performed FIM on a subset of chemicals hav-
ing predicted endocrine pathway bioactivity (EACs). Figure 5
shows the 20 most prevalent EACs and their departure from the
global rank order by demographic (threshold revalence= 0:1%,
overall and for each demographic). The prevalence of the EACs
were about an order of magnitude lower than the top chemicals
overall. The target receptors of these prevalent EACs are depicted
on the left side of Figure 5, where these are either the AR, estrogen
receptor (only the case for propylparaben), or “other” (these

Figure 3. Ranking of co-occurring chemicals. Heat map illustrating the ranked support for the 20 most prevalent chemical combinations. For a demographic,
green color denotes a downward shift of rank relative to the global (lower priority), and red denotes an upward shift (higher priority). Cell numbers quantify
the unit change in rank relative to the global rank. Note that ranks are not comparable across demographics as a quantitative measure but are intended to sug-
gest shifts in potential exposure for different demographics with respect to all households. Column annotations indicate demographic categories and row anno-
tations indicate harmonized functional use of chemicals. (A) and (B) annotate groups with similar co-occurrence patterns across demographics as discussed in
the main text. Rows and columns were clustered using complete linkage hierarchical clustering based on correlation of rank departures.
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chemicals had no predicted activity in COMPARA or failed to
demonstrate strong-moderate activity in CERAPP but are part of a
curated list of EACs and were included for completeness). An
emollient, decamethylcyclopentasiloxane, was the most prevalent
EAC, occurring in about 8.1% of household-months from purchase
of a variety of personal care products. It exhibited fairly uniform
prevalence across all demographics. A chemical with high varia-
tion in rank difference across demographics (+6 in Asian house-
holds and −4 or−5 for households with children or a female of
childbearing age) was phytonadione, also known as vitamin K,
found here in dietary supplements and facial creams. Similarly, dl-
tocopherol (a class of organic chemical compounds with vitamin E
activity) exhibited a similar pattern. Ranked two or three places
higher in households with children was the combination of chemi-
cals benzethonium chloride and diazolidinyl urea (a formaldehyde
releaser), which may be used as topical antimicrobial agents in
baby wipes, bubble baths, cosmetics, and skin-care products. Last,
households with children under 6 years of age have a higher rank-
ing (+3 rank difference) for the substances covered by quaternary
ammonium compounds, di-c14-18-alkyldimethyl, andme sulfates,

which were used in disinfectants and hand soaps. All prevalent
EACs are provided in Excel Table S6.

Figure 6 shows the demographic ranking of the 20 most prev-
alent multiple-chemical itemsets that contain a subset of the 65
EACs (minimum prevalence was lowered to 0.01% due to the
small number of chemicals). The 50 most prevalent chemical
itemsets for each demographic are provided in Excel Table S7.
One itemset, {dl-tocopherol mixture | phytonadione}, contained
two chemicals that targeted the same receptor (AR). The highest
positive rank departure for households with children (+9 for
Under 6) occured for the itemset {decamethylcyclopentasiloxane
| limonene}. Households with a female head of Asian race had
the highest positive rank departure for the combination of limo-
nene and linalool, the latter of which is used as a scent and found
here in perfumed hygiene products and cleaning agents. African-
American households had a positive rank departure of 6 for the
combination {linalool | 2-phenylethanol}; the second chemical is
a floral fragrance primarily used here in air fresheners.

Table 2 lists the EACs occurring in multiple products in at
least 0.1% of all household-months. In addition to having the

Figure 4. Total number of frequent chemical combinations across demographic groups for five product groups. For each combination of product group and de-
mographic, the purchasing data were reduced to only those chemicals in products contained in the product group and only those households matching the spe-
cific demographic category. Parameters for frequent itemset mining: minimum support = 0:1%, minimum set length= 2, and maximum set length = 10.

Environmental Health Perspectives 067006-8 129(6) June 2021



highest prevalence, the EAC decamethylcyclopentasiloxane also
had the most potential for aggregate exposure, occurring in at
least 2 purchased consumer products in around 6,400 household-
months. Investigation of the type of purchased products that led
to functional use aggregation revealed that two of these chemicals
(benzyl acetate and diphenyl oxide) came primarily from prod-
ucts within a single product group (Figure S10). For example, all
products associated with multiple occurrences of diphenyl oxide
(a chemical used widely in soap perfumes) were hair-care prod-
ucts, and this chemical achieved the highest difference in rank,
−7, for households with a head female of African-American race
(Figure 5). Similarly, behentrimonium methosulfate aggregated
exclusively in hair-care products and, interestingly, the rank differ-
ence of this chemical became more positive (increased potential
exposure) as the age of children in the household increases (1 for
under 6 y, 2 for under 13 y, and 3 for under 18 y; Figure 5).

Aggregation of benzethonium chloride came exclusively through
the purchase of disinfecting wipes (in the paper product category,
which accounted for over 90% of aggregation), and dl-tocopherol
mixture, fromvitamins. However, other EACs (propylparaben, lin-
alool, 2-hydroxy-4methoxybenzophenone, and 1-cedr-8-en-9-yle-
thanone) occurred in at least six product categories.

Discussion
Individuals in a household are exposed to thousands of chemi-
cals through the products they use, which can result in simul-
taneous exposures to combinations of chemicals that occur in
products that are frequently bought and used together or may
increase exposures to single chemicals that occur in multiple
products. Through integration of household purchasing data
with data matching chemicals to consumer products and

Figure 5. Prevalence and ranking of individual endocrine active chemicals (EACs). Heat map illustrating the ranked support for the 20 most prevalent EACs
(0.1% prevalence threshold). For a demographic, green color denotes a downward shift of rank relative to the global (lower priority), and red denotes an
upward shift (higher priority). Cell numbers quantify the unit change in rank relative to the global rank. Note that ranks are not comparable across demo-
graphics as a quantitative measure but are intended to suggest shifts in potential exposure for different demographics with respect to all households. Column
annotations indicate demographic categories and row annotations indicate harmonized functional use of chemicals and their predicted target receptor.
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subsequent FIM analyses, we have identified chemical groups
to which consumers may be coexposed and individual chemi-
cals for which the assessment of aggregate exposures may be

important. Furthermore, we have identified prevalent mixtures
associated with differential chemical exposure potential in
specific demographic subgroups. Although our approach has

Table 2. Endocrine active chemicals aggregated in at least 0.1% of household-months.

Aggregate endocrine active
chemical

Household-months
with aggregation

% of Total household-months
(539,827)

Mean number of products
per household-month Receptor action

Decamethylcyclopentasiloxane 6402 1.19 (%) 2.27 Other
Propylparaben 3975 0.74 (%) 2.24 Estrogen
Linalool 3380 0.63 (%) 2.27 Other
2-Hydroxy-4-methoxybenzophenone 2679 0.50 (%) 2.20 Androgen
Benzyl acetate 2203 0.41 (%) 2.39 Other
1-Cedr-8-en-9-ylethanone 2079 0.39 (%) 2.18 Androgen
Diphenyl oxide 2063 0.38 (%) 2.2 Other
1-Tetradecanamine, N,N-dimethyl-,

N-oxide
1411 0.26 (%) 2.16 Androgen

Methylparaben 1376 0.25 (%) 2.24 Other
Limonene 1191 0.22 (%) 2.16 Other
Benzethonium chloride 855 0.16 (%) 2.48 Estrogen
Dl-tocopherol mixture 810 0.15 (%) 2.13 Androgen
Behentrimonium methosulfate 633 0.12 (%) 2.12 Androgen
Diazolidinyl urea 559 0.10 (%) 2.18 Androgen

Note: Aggregation is defined as occurring in two or more of a household’s purchased products in a single month. Chemicals labeled “Other” in the Receptor Action column are those
appearing in the literature curated list (Dodson et al 2012) but not predicted to have endocrine receptor (ER) or androgen receptor (AR) activity in the Collaborative Estrogen Receptor
Activity Prediction Project (CERAPP) or Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) studies.

Figure 6. Ranking of co-occurring endocrine active chemicals (EACs). Heat map illustrating the ranked support for the 20 most prevalent EAC combinations.
For a demographic, green color denotes a downward shift of rank relative to the global (lower priority), and red denotes an upward shift (higher priority). Cell
numbers quantify the unit change in rank relative to the global rank. Note that ranks are not comparable across demographics as a quantitative measure but are
intended to suggest shifts in potential exposure for different demographics with respect to all households. Column annotations indicate demographic categories
and row annotations indicate harmonized functional use of chemicals and their predicted target receptors.
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limitations, it has the potential to ultimately inform the selec-
tion of chemicals for further testing in HTS.

Limitations of the Consumer Product Data
There are several limitations of the consumer product purchasing
data. The Nielsen purchasing data included barcode-scannable
products only and were collected for market research purposes
where participation from consumers (by manually scanning their
purchased products) was encouraged through monetary reim-
bursement. Therefore, we are unaware whether each household
exercised complete participation and scanned all the products
they purchased or some fraction of them (the median number of
products per household over the year was 65, between 5 and
6 products per month for the categories provided by Nielsen).
There may also have been differences in the amount of participa-
tion across various demographic groups, which could potentially
affect the outcome of certain analyses. Furthermore, we are
assuming that purchase implies use (and exposure) within the
same month, which may be a better assumption for some product
categories than others.

The large consumer product chemical ingredient data set stud-
ied here still only reflects a portion of substances to which people
are truly exposed via products. A substantial fraction of the UPCs
in the raw CPP data set were not represented in the CPDat data.
In the current version of CPDat, the SDSs used were from a small
set of large retailers who disclosed their SDSs to the public. Due
to the fuzzy matching of UPCs, some chemicals (e.g., compounds
that vary between different fragrances/flavors of a product) may
have been mis-assigned, potentially affecting the prevalence of
some chemical combinations. Although it was difficult to quan-
tify the accuracy of the fuzzy matching, it substantially improved
product coverage. We believe the fuzzy matching accuracy to be
sufficient and, therefore, justifies its use in this work. Also, most
of these SDSs were obtained in recent years, whereas the pur-
chasing study took place in 2012. This difference in time and
product coverage may have been a contributing factor to the dis-
crepancy in UPC mapping because some products may have
undergone partial reformulation (or even reassignment of UPC),
resulting in a rather different version of these products in the lat-
est instance of CPDat. Although it is rare for a product’s UPC to
be changed, it used to be possible to reuse UPCs. As for SDS,
there does not seem to be a strict, easily enforceable requirement
on updating the information, suggesting that some SDS could be
quite similar to the 2012 version, whereas others may have been
updated more than once. More to this point, the product market
has changed since 2012, and a shift in product manufacturing
(due to circumstances such as use of favored, cheaper, or newer
chemicals) may result in a shift in prevalence for some of the
chemical combinations identified in this work. Assuming perfect
product coverage, a likely outcome would be that either the top
subsets found in this work would cover a subset of those obtained
when all products were mapped, or the same top sets would be
highly similar with greater prevalence. These outcomes are rea-
sonable given that the mapped products accounted for more than
half of the total purchases.

Another important caveat of consumer product purchasing
habits is that some families, particularly those with lower house-
hold incomes, may live in areas with limited access to grocery
stores or larger retailers. These individuals instead obtain their
products from businesses such as gas stations or dollar stores. It
is also possible that certain households purchase products from
stores that serve specific demographic groups. Therefore, pur-
chases or products falling into this category would be unlikely to
have corresponding data in CPDat, further limiting our coverage
of product purchases. As more data are collected and added to

CPDat, more accurate results from the FIM analyses can be
obtained, potentially resulting in additional prevalent chemical
itemsets. In addition, we are currently limited to ingredients
reported by manufacturers and companies, either in safety data
sheets, in product ingredient disclosures, or on product labels.
These sources reflect primarily ingredients intentionally added to
products, and in the case of some SDSs, only ingredients meeting
some toxicity criteria. In addition, some chemicals may not be
reflected in the data because they might have been reported only
by their function, such as “fragrance” or “colorant.” Greater
transparency by product manufacturers could lead to increased
coverage in terms of more complete chemical lists for products
as well as the intended functional use of each chemical in those
products. Additionally, only chemicals in formulated products
and not consumer articles (such as building materials and furnish-
ings) are considered here. Articles contain and emit chemicals
(including potential EACs such as phthalates) into the residential
environment (Eichler et al. 2021) and thus likely affect coexpo-
sures. New technologies in the areas of analytical chemistry, such
as nontargeted analysis (NTA), can help identify many chemical
ingredients in products, including those in formulated products
that were not added intentionally (e.g., residues from manufactur-
ing processes) and those in articles. In addition, new NTA studies
of biological media such as blood or urine will complement and
evaluate predictions of coexposures associated with consumer
products. Such studies also have the potential for identifying mix-
tures containing metabolites associated with consumer product
chemicals such as those studied here.

Demographic Differences
It is expected that different demographic groups purchase differ-
ent consumer products for several reasons (e.g., cultural differen-
ces, brand loyalty, or cost considerations). Typically, the most
highly prevalent itemsets exhibited consistent rankings across
demographics; as prevalence decreased, a wider variability in
demographic-specific rankings was observed. Collectively across
all products and by product group, our results indicated that
households with children, households headed by women of color,
and lower income households exhibited divergence from the gen-
eral population in the chemical combinations they encounter
most frequently. This finding may be due to a need for different
types of personal care products specifically for given races or eth-
nicities, brand or regional preferences, or simply the need for a
wider variety of products in households with multiple children.
These patterns may reflect differential experiences and thus dif-
ferential exposures among demographics. Such differential expo-
sures have been previously supported by empirical investigations
in women of color (Branch et al. 2015; Ding et al. 2020; Nguyen
et al. 2020) and individuals with lower income (van Woerden
et al. 2019). Further understanding the specific sources of these
disparities would be a priority for future research and could
include further analyses of the purchasing data to examine both
product brand (which in some cases could be a surrogate for store
access) and refined product type (which could be used to quantify
differences in habits and practices among demographics). One ca-
veat here is that the demographic groups with greater divergence
from the general population trends are also some of the more
underrepresented groups in the purchasing data set. The sample
population is somewhat skewed toward households with higher
wealth, education, and those of White race relative to the U.S.
general population described in the 2012 American Community
Survey (U.S. Census Bureau 2010). Methods such as subsam-
pling from these more highly represented demographics or add-
ing weights to the samples could help transform the data to be
more consistent with the U.S. general population; however, due
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to the way we examined chemical combinations within subpopu-
lations and compared the rank order with all households (as
opposed to exact counts and prevalence values), we believe the
skewed distributions should have a minimal impact on co-
occurrence patterns. Another caveat to the purchasing data is that
demographic information is available only for the head female of
the household. Having information for all individuals in the
home would help provide a clearer understanding of true expo-
sure potential by demographic.

Chemical Combinations Identified
To our knowledge, the present study is the largest of its kind to
date in terms of the number of chemicals analyzed and is the first
to link these chemicals directly to consumer products purchasing
habits. Gabb and Blake (2016) assessed co-occurrence of 55
endocrine-disrupting and asthma-associated chemicals known to
be in consumer products, and Tornero-Velez et al. (2020) charac-
terized purchasing habits of households across the United States.
Kapraun et al. (2017) examined co-occurrence of 108 chemicals
measured in human blood and urine. The current study is an
attempt to provide a complementary view of chemical exposure
by identifying potential combinations of hundreds of additional
chemicals in consumer products. It was interesting that in this
work only 48 chemicals out of the thousands that tested positive
for endocrine activity were found in the set of intentionally added
consumer ingredients. Although this finding indicates that in gen-
eral many consumer ingredients are not endocrine active in the
available ToxCast™ assays, active compounds occurred in many
products across multiple categories. Due to the small number of
chemicals in the Gabb and Blake study and the Kapraun study, a
comparison of results with those from this work is limited.
Kapraun et al. (2017) looked at three groups of individuals and
found measurable concentrations of 29, 37, and 40 chemicals
(106 in total). Using the supplemental tables in Kapraun et al.,
we found fifteen of the NHANES chemicals in our final broad set
of 649 chemicals, with 3 meeting the 0.025 prevalence threshold
(propylparaben, 2-hydroxy-4-methoxybenzophenone, and meth-
ylparaben). The chemical ethylparaben met the threshold for our
EAC case study (0.001), and we see agreement with Kapraun
et al. in that these three parabens make up prevalent combinations
(pairs in Kapraun study and the second most prevalent EAC com-
bination identified in this work). The discrepancy between the
shared chemicals that were not prevalent in terms of consumer
product purchasing could be due to a variety of biological proper-
ties (clearance rates, metabolism, etc.). 32 NHANES chemicals
were in TSCA but did not occur in any purchased products (these
include a number of metals from Group A, pesticides from Group
B, pyrethroids, herbicides, and polyfluoroalkyl chemicals from
Group C). Furthermore, 59 NHANES chemicals were not in
TSCA or purchased products. These chemicals include most
phthalates, polycyclic aromatic hydrocarbons, arsenics, phytoes-
trogens, pyrethroids, herbicides, caffeine and its metabolites, as
well as nitrate, perchlorate, and thiocyanate. Some potential
explanations for this discrepancy are that only the parent chemi-
cals of these measured metabolites are used in products, that the
variety of consumer products are restricted to those sold at major
retailers, or that exposure to many of these metabolites comes
from other sources (such as air, dust, water, surfaces). When con-
sidering EACs only, multiple chemicals (methylparaben, ethyl-
paraben, linalool, limonene, benzophenone-3, and eugenol) from
Gabb and Blake (2016) were also prevalent in the consumer pur-
chasing data examined in this work. There were likewise similar-
ities in the top twenty co-occurring EACs each identified by
Gabb and Blake (2016) and our analysis, including the three-way
combination of propylparaben, methylparaben, and ethylparaben,

and the pairs limonene and propylparaben, limonene and linalool,
and 2-hydroxy-4-methoxybenzophenone/benzophenone-3 and
methylparaben. This level of overlap between these two studies,
particularly considering that comparisons are being done between
a small number of the most prevalent individual and co-occurring
EACs, we can draw two conclusions about EACs. First, they are
present in a nonnegligible fraction of consumer products.
Second, the consumer products containing these chemicals are
then purchased and brought into households with a level of con-
sistency that make them an important factor to consider for dis-
cussions involving hazard or toxicity relating to consumer
products use.

Informing Toxicity Testing
HTS provides a framework for testing mixtures of chemicals for the
characterization of concentration–response effects, including the
potential for additivity, synergies, and antagonism. However, there
are currently limited bioactivity data to evaluate concentration,
effect, or integrated addition hypotheses (Rider and LeBlanc 2005).
In vitro mixture studies would deepen scientific confidence in pre-
liminary understanding of the mathematical relationships between
the effects of single chemicals vs. the effects of multiple chemicals,
ultimately forming a framework for computational extrapolation of
single chemical bioactivity data to mixtures.(Hsieh et al. 2021) In
vitro mixture studies that reflect real-world chemical exposures,
especially those potentially impacting the same biological pathway,
would be of high value. (National Research Council Committee on
Toxicity Testing and Assessment of Environmental Agents 2007)
Additionally, itmay be possible to identify potential exposure routes
associated with certain chemical combinations by tracking which
products are contributing to the chemical co-occurrence, e.g., perso-
nal care products via dermal routes and cleaning products via inhala-
tion. This route information could also be used to tailor and/or
prioritize in vitro experiments. It is also important to note that foods
are not included in the purchasing data, butmany of the same chemi-
cals (flavors, preservatives, and color additives) contribute to dietary
exposure. This contribution is important to keep in mind when con-
sidering route-specific exposures associated with these prevalent
combinations.

The possible number of chemical combinations from the target
chemicals identified across the observed purchased consumer
products is 10195 (even when considering only pairs of chemicals,
there are around 210,000 possibilities); however, our FIM analysis
demonstrated that the number of chemical combinations occurring
frequently in households across theUnited States (which are poten-
tially reflective of real-world coexposures) is considerably fewer.
Most interesting is that we have identified prevalent combinations
known to affect common biological pathways of interest. These
results can inform the prioritization of chemical mixtures for toxic-
ity testing. Further prioritization of the identified prevalent combi-
nations could be performed according to their response in single-
chemical assays, or according to likely blood concentrations, deter-
mined from further exposure and toxicokinetic modeling as
described below. Another approach to assessing mixtures associ-
ated with consumer products would be to prioritize individual
products or product categories based on the analyses presented
here (e.g., by potential for containing multiple chemicals with ac-
tivity) and then test entire extracts from a representative set of
products. Such an approach could also include effect-directed anal-
ysis to identify the active constituents in the extract, be they inten-
tionally added ingredients, contaminants, or transformation
products. Such approaches have been used previously for food
contact materials (Rosenmai et al. 2017), plastic consumer articles
(Zimmermann et al. 2019), and baby teethers (Berger et al. 2015).
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When it comes to evaluating any identified combination in
vitro, the concentration or dose of each chemical in the combina-
tion should reflect real-world doses. The NRC has identified such
quantitative mixture characterization as a high priority for expo-
sure science (National Academies of Sciences, Engineering, and
Medicine 2017). The specific product purchasing and chemical
occurrence patterns identified herein can be used to parameterize
existing screening-level exposure models (Isaacs et al. 2014) that
consider product use patterns (e.g., likely frequencies and masses
of use based on product category), chemical product weight frac-
tions, and chemical properties to estimate intake exposures in
milligrams per kilogram of body weight per day. These exposure
predictions can be integrated with HT toxicokinetic models
(Pearce et al. 2017) that then convert predicted external expo-
sures to ranges of plasma concentrations that can inform the
selection of target concentrations in HTS assays.

Conclusion
Humans are potentially exposed to many chemicals from the
products they purchase and use in the household. This exposure
occurs in the form of a combination of chemicals from different
products rather than one chemical at a time. Assessing every pos-
sible set of chemicals for toxicity is an impossible task but also
an unnecessary one, because as shown here the number of chemi-
cal mixtures that are prevalent and occur in real-world scenarios
may be drastically less. We have presented here a novel approach
that applies FIM on a data set describing the chemicals entering
households through purchased consumer products to identify a
manageable number of chemical combinations that regularly
occur in homes across the United States, which can inform the
prioritization of chemical combinations for toxicity testing.
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